The rapidly evolving field of plant centromeres.

نویسندگان

  • Anne E Hall
  • Kevin C Keith
  • Sarah E Hall
  • Gregory P Copenhaver
  • Daphne Preuss
چکیده

Meiotic and mitotic chromosome segregation are highly conserved in eukaryotic organisms, yet centromeres--the chromosomal sites that mediate segregation--evolve extremely rapidly. Plant centromeres have DNA elements that are shared across species, yet they diverge rapidly through large- and small-scale changes. Over evolutionary time-scales, centromeres migrate to non-centromeric regions and, in plants, heterochromatic knobs can acquire centromere activity. Discerning the functional significance of these changes will require comparative analyses of closely related species. Combined with functional assays, continued efforts in plant genomics will uncover key DNA elements that allow centromeres to retain their role in chromosome segregation while allowing rapid evolution.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adaptive evolution of centromere proteins in plants and animals

BACKGROUND Centromeres represent the last frontiers of plant and animal genomics. Although they perform a conserved function in chromosome segregation, centromeres are typically composed of repetitive satellite sequences that are rapidly evolving. The nucleosomes of centromeres are characterized by a special H3-like histone (CenH3), which evolves rapidly and adaptively in Drosophila and Arabido...

متن کامل

Centromeres Convert but Don't Cross

A long-standing problem in chromosome biology concerns the dynamic nature of centromeres. These chromosomal sites assemble the protein machines called kinetochores that connect chromosomes to the spindle microtubules for segregation to daughter cells during mitosis and meiosis. In multicelluar eukaryotes, centromeres are typically composed of highly homogeneous tandem repeats that evolve rapidl...

متن کامل

Rapid evolution of yeast centromeres in the absence of drive.

To find the most rapidly evolving regions in the yeast genome we compared most of chromosome III from three closely related lineages of the wild yeast Saccharomyces paradoxus. Unexpectedly, the centromere appears to be the fastest-evolving part of the chromosome, evolving even faster than DNA sequences unlikely to be under selective constraint (i.e., synonymous sites after correcting for codon ...

متن کامل

Rapid centromere evolution in potato: invasion of the satellite repeats.

In contrast to the gene-rich chromosome arms, the sequence of a typical plant centromere contains a large amount of repetitive DNA, most commonly large tracts of tandemly repeated sequences, or satellite DNA. However, the question of how this arrangement of sequences comes about is still a matter of active debate (reviewed in Malik and Henikoff, 2009). Centromere sequence evolves rapidly, possi...

متن کامل

The centromere paradox: stable inheritance with rapidly evolving DNA.

Every eukaryotic chromosome has a centromere, the locus responsible for poleward movement at mitosis and meiosis. Although conventional loci are specified by their DNA sequences, current evidence favors a chromatin-based inheritance mechanism for centromeres. The chromosome segregation machinery is highly conserved across all eukaryotes, but the DNA and protein components specific to centromeri...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Current opinion in plant biology

دوره 7 2  شماره 

صفحات  -

تاریخ انتشار 2004